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Nonintersecting String Model and 
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a Ports Model 
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Using a graphical method we establish the exact equivalence of the partition 
function of a q-state nonintersecting string (NIS) model on an arbitrary planar, 
even-valenced, lattice with that of a q2-state Potts model on a related lattice. 
The NIS model considered in this paper is one in which the vertex weights are 
expressible as sums of those of basic vertex types, and the resulting Ports model 
generally has multispin interactions. For the square and Kagom6 lattices this 
leads to the equivalence of a staggered NIS model with Potts models with 
anisotropic pair interactions, indicating that these NIS models have a first-order 
transition for q > 2. For the triangular lattice the NIS model turns out to be the 
five-vertex model of Wu and Lin and it relates to a Potts model with two- and 
three-site interactions. The most general model we discuss is an oriented NIS 
model which contains the six-vertex model and the NIS models of Stroganov 
and Schultz as special cases. 

KEY WORDS:  Nonintersecting string model; Potts model; vertex model; 
graphical approach. 

1. I N T R O D U C T I O N  

Great progress has been made in recent years in solving lattice models in 
statistical physics. (1) Many of the solved problems can be formulated as 
vertex models in which the system is described by assigning states to the 
lattice edges and Boltzmann weight factors to the vertices dependent on the 
incident states. For many of the earlier solved models the edges can be in 
one of two states (colors) and the configurations can be described in terms 
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of strings of conserved color on the lattice edges. Included are the ice-rule 
models, (2'3) the eight-vertex model, (4) and the (critical) Potts model. (5'6~ 

Recently, there has been increasing interest in considering string 
models with more than two colors. (7) One of the earliest investigations is by 
Stroganov, (8) who considered a 3-state nonintersecting string model, a 
model in which the states are described by strings of conserved colors that 
do n o t  intersect, and obtained its solution in two special cases. Stroganov's 
result was generalized to an arbitrary number, q ~> 2, of states by Schultz(9); 
and Perk and Schultz (7'1~ further extended the general q >~ 3 solution to 
q +  1 distinct cases. (The details of the analysis together with the con- 
sideration of some additional complex cases can be found in Ref. 12.) 
These investigations, which have been carried out using the commuting 
transfer matrices approach and the matrix inversion trick, lead, quite sur- 
prisingly, to a bulk partition function identical to that of the critical Potts 
model (or the six-vertex model). There has been no direct simple proof of 
this mystifying fact which Baxter (13/ referred to as "weak equivalence". In 
general there is only the heuristic matrix inversion argument, except for 
one case for which a Bethe Ansatz could be carried out .  (11)'3 

In this and a forthcoming paper (14) we shall report on further exact 
results on the general q-state vertex problem. We shall use a graphical 
approach which permits us to discuss vertex models on arbitrary planar 
lattices. We shall establish new equivalences between lattice-statistical 
models and resolve, among other things, in simple graphical terms the 
problem concerning the weak equivalence observed above. 

In this paper we start defining the general q-state vertex model on a 
square lattice. We shall show how it can be formulated, equivalently, as an 
interaction-around-a-face model. This equivalence establishes a connection 
between two types of lattice-statistical problems, which are often con- 
sidered in different contexts. In Section 2 we shall also define the noninter- 
secting string (NIS) model. The particular NIS model considered in this 
paper is a "separable" one in which the vertex weights can be written as 
sums of those of basic types. In Section 3 we shall consider such a q-state 
NIS model on an arbitrary planar lattice of valence 4, and show that it is 
equivalent to a q2-state Potts model. This equivalence can be extended to 
an oriented NIS model in which edges of certain colors also carry arrows. 
This model contains the ice-rule model as a special case when all edges are 
oriented. In Section 4 we shall consider a q-state NIS model on an 

3 After the completion of this research we received a preprint from T. T. Truong, who has 
given a proof of this weak equivalence through the consideration of the model of A. B. 
Zamolodchikov and M. I. Monastyrskii, Zh. Eksp. Teor. Fiz. 77:325 (1979) [Sov. Phys. 
JETP 50:167 (1979)]. 



Equivalence with a Potts Model 729 

arbitrary even-valenced lattice, and show that it is also equivalent to a q2_ 
state Potts model, although now in general with pair as well as multispin 
interactions. In Section 5 we shall apply these results to regular lattices and 
deduce critical properties of the separable NIS model from the known 
properties of the Potts model. 

In a later paper (14) we shall study the Baxter-Yang relation for the 
general NIS model. We shall verify that it is also satisfied by our general 
oriented NIS model for a suitable parametrization. We shall discuss 
implications of this, including a graphical derivation of the inversion 
relation and the solution of the solvable NIS models. 

2. G E N E R A L  V E R T E X  M O D E L  

2.1, De f in i t ion  

In this section we consider a square lattice 5~ of N sites with periodic 
boundary conditions. Each lattice edge of ~ can be in one of q distinct 
states (colors) which are specified by an edge (string) variable # = 1, 2,..., q. 
A vertex weight coi(2,/~, c~,/?) is assigned to the ith vertex whose four 
incident edges are in respective states 2, /~, ~, and /3. Then, in the most 
general case, we have q4 distinct vertex weights, and a q4-vertex model. 
Particularly for q = 2 ,  this becomes the 16-vertex model. (~5~ We wish to 
compute the per site partition function 

~c= lira Z I/N (1) 
N ~ o c )  

Here Z is the partition function given by 

N 

z =  2 [I (2) 
i = 1  

where the summation is taken over all 2N edge configurations of the lattice 
and the product is taken over all N vertex weights. 

2~ Equiva lence w i t h  an IRF M o d e l  

It has become customary to study lattice models utilizing the interac- 
tion-around-a-face (IRF) language for which states are assigned to lattice 
faces, rather than edges. ~1~ To establish a connection with our con- 
siderations we shall now show that the IRF model and the vertex model 
formulations can be seen as entirely equivalent. Specifically, we shall show 
that a q-state vertex model can always be transcribed into a q2-state IRF 
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model  defined on the same lattice, and that,  conversely, any q-state I R F  
model  can be reformulated as a qZ-state vertex problem.  Specific 1-1 map-  
pings are given in Figs. l a  and lb. In Fig. l a  we assign to each edge 
between faces with states a and b the state ab ==- (a - 1) q + b; to all vertices 
with a conf igurat ion inconsistent  with this ass ignment  we give a weight 
c o = 0 ;  if the conf igurat ion is consistent we identify the weights, i.e., 
co(ad, bc, ab, dc)=-W(a,  b, c, d). In Fig. lb  we assign to each face a state 

dc 

ad 

d C 

a b 

bc 

ob 

(a) 

>,P P 

- - X  

~ct  a ~zt "~J at 

X ~ ~ '  

(b) 

Fig. 1. (a) Configuration with Bottzmann weight W(a, b, c, d) of a q-state IRF model, 
a, b, e, d= 1, 2,..., q, and the corresponding qZ-state vertex model configuration. 
(b) Configuration with Boltzmann weight o~(2,#0a, fl) of a q-state vertex model, 
2, #, ~,//= 1, 2,..., q, and the corresponding q2-state IRF-model configuration. 
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made up from the states to the right of and below the face; we assign 
weight W =  co or 0 depending on whether the 1RF model configuration is 
consistent or inconsistent (following the prescription of Fig. lb) with a ver- 
tex-model configuration. 

We should note that there are, in specific models, other interesting 
mappings between vertex and IRF models. As examples, we mention the 
relation between the eight-vertex model and the Ising model with two- and 
four-spin interactions (~5-~7) and between the hard-hexagon model and a 3- 
state vertex model. (H) 

2.3. Nonintersecting String (NIS) Model 

The most general q-state model defined by (2) is a q4-vertex model. 
Studies in the past, (7 12) however, have focused primarily on a subclass 
when the vertex weights satisfy 

o~i(,~, ~, ~,/~)-- wppd, 
_ r 
- -  W p a  ~ 

l 

=0, (3) 

where the indices 2, #, c~, /~ are positioned as shown in Fig. lb. In other 
words, only the three vertex types shown in Fig. 2 are allowed. If one now 
traces along lattice edges of the same color always making 90 ~ turns, one 
eventually completes a loop. After this is done for all edges, the lattice is 
decomposed into loops which do not intersect. This is the nonintersecting 
string (N1S) model. (11) 

if 2=#=~=fl=p 

if p=2=aCfl=#=a 
if p = # = c ~ # 2 = / ~ = a  

otherwise 

p o- o" 

P P P 

P P 

- - O -  O "  

d r 
W pp W po- W 

Fig. 2. The three allowed vertex types ~n the NIS model on a square lattice. 
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Generally, the restriction (3) permits q + 2q(q - 1 ) = q(2q - 1 ) distinct 
vertex configurations, and the q-state NIS model becomes a q ( 2 q -  1)-ver- 
tex model. This leads to, for q = 2, a 6-vertex model which can be directly 
mapped into a staggered ice-rule model. 4 The q =  3 problem was con- 
sidered by Stroganov, (s) who found two soluble cases. The most  general 
solution is by Perk and Schultz (7A~ who solved the NIS model (3) in 
q + 1 distinct cases for arbitrary q ~> 3. It  was found that, in all soluble 
cases, the solution is the same as that of the critical Potts model. In the 
next section we show, more generally, a special NIS model can always be 
formulated as a Ports model, and that this can be done for any planar lat- 
tice with arbitrary Potts interactions. Particularly, the critical Potts model 
on the square lattice which is exactly soluble, leads to one of the previously 
solved cases, and this explains the weak equivalence mentioned above. 

The definition of the NIS model can be extended to any lattice which 
has even valences at all sites. In the general NIS model only those vertex 
configurations which can be decomposed into non-intersecting trajectories 
are allowed. Globally, the lattice is decomposed into loops of given colors, 
which do not intersect. Explicit examples of allowed vertex configurations 
will be given later for the case of valence 6. 

3. E Q U I V A L E N C E  OF A NIS M O D E L  W I T H  A POTTS MODEL:  
A R B I T R A R Y  LATTICE OF V A L E N C E  4 

3.1. NIS Model  on a Surrounding Latt ice 

In this section we consider a NIS model on an arbitrary planar lattice 
s of valence 4, which does not have to be regular. The NIS model is a 
q ( 2 q - 1 ) - v e r t e x  model defined by the vertex types shown in Fig. 2. Since 
the set of faces of an even-valenced lattice is bipartite, it is convenient to 
shade every other face of 5~', so that the pairs of two edges having the 
same label (color) will either separate or join two shaded areas at a given 
vertex. Then we consider a NIS model with site-dependent vertex weights 
wi, i = l , 2  ..... N, 

wi = A~+ Bi, 

~- Ai~ 

= Bi, 

if all 4 edges have the same color 

if the shaded areas are joined 

if the siaaded areas are separated (4) 

4 The mapping can be carried out by following the prescription given by Fig. 5 of Ref. 15. The 
resulting i ce - ru le  m o d e l  ha s  t he  weights (W/2, 14;21,l W21,r W~2, wd2, Wll)d a n d  (w21 , /  w12,l w~2, W~l, 

Wldl, wzd2) alternately, on the two sublattices I and II of the square lattice, and is soluble if 
l __ l r r d __ d 

W12 --  W21~ 11212 ~ W21 ~ Wll -- W22. 
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p p o- ~ p o- 

p p p p p o-  

Ai + Bi Ai @i 

Fig. 3. Vertex weights of a NIS model on an arbitrary lattice of valence 4 (p ~ ~). 

These situations are shown in Fig. 3. Note that in the case of a square lat- 
tice the weights w r (and w t) in (3) are equal to Ai and B i alternately as 
i ranges from sublattice I to sublattice II, and the NIS model is therefore 
"staggered." Note that in (4) and Fig. 3 we can regard the vertices with 
weights Ai and Bi as two basic types. Then the weight of the vertex with 4 
edges having the same color can be written as the sum of those of the basic 
types, corresponding to the two ways the vertex configuration can be 
decomposed. In this sense the vertex weight given by (4) is separable. 

The four-coordinated lattice LP' can be regarded as the surrounding 
graph (lattice) of another lattice ~ (or 5,~ D, the dual of f )  whose sites 
reside in the shaded (or unshaded) faces of S ' .  ~8) For  planar Y we need 
to pay special attention at the boundary. The boundary sites of 5(' (or SD) 
are closed in by introducing "external" sites for 5(" and connecting them by 
straight edges. Readers are referred to Ref. 18 for examples of explicit con- 
structions. In particular, 5~ is a simple square lattice if LP' is simple square, 
and L~ is either triangular (or hexagonal, the dual of triangular) if 5 ~ is 
the Kagom6 lattice. At the boundary we require the edge colors be conser- 
ved at all external sites so that 5?.' can again be decomposed into noninter- 
secting loops. While this requirement imposes a severe constraint on the 
vertex types that may occur at the boundary, it will not affect the bulk par- 
tition function ( l )  as long as the vertex weights (4) are all positive. Finally, 
the external sites always carry weights 1, independent of the color of the 
two incident edges. 

3.2.  E q u i v a l e n c e  w i t h  a P o t t s  M o d e l  

Our main result in this section is the equivalence of the q-state 
NIS model (4), defined on 2" ,  with a q2-state Ports model defined on 
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(or s It is clear that the N sites of 50' coincide with the N edges of 50 
(or ~D)- Let the numbers of sites of 5 ~ and 5~ be M and MD, respectively. 
The equivalence is then stated in the following theorem: 

T h e o r e m :  
N 

q  lPott  q2, 

I = Ai 't Lvo,ts~t j (5) 

where Zz~1s(q) is the partition function (2) of the q-state NIS model (4), 
Zeotts(q 2) is the partition function of a qZ-state Ports model on 50 defined 
in the standard way ~ with edge-dependent Boltzmann weights 

e xi= 1 + qAjBi ,  i= 1, 2,..., N (6) 

and ~,o~t~7(m r,2~: is the partition function of a q2-state Ports model on 50o 
with Boltzmann factors 

e~~ 1 + qBjAi ,  i = 1, 2,..., N (7) 

Proof. To prove the theorem we observe that the particular 
separable form of the vertex weights (4) permits us to write the partition 
function (2) as a sum over all nonintersecting polygonal decompositions P 
of s ~ The summation is linear in Ai and B~, for all i, with A~(Bi) appearing 
in terms where shaded areas at the ith vertex are joined (separated). The 
partition function takes the form 

ZN~s(q) = ~  qP(P)~I W~(P) (8) 
P i 

where p(P) is the number of polygons (loops) in P, each of which can be 
colored independently in q different ways. Here Wg(P) is the weight of the 
ith site in P, equal to Ag(B~) if the shaded areas at the site are joined 
(separated). The expansion (8) is the key expression which leads to an 
equivalence to a Potts model. The theorem is proved since the partition 
function of a Potts model can also be written as a sum over the same 
polygonal decompositions. ~ The theorem now follows from a direct com- 
parison of (8) with Eq. (9) of Ref. 18. | 

Coro l l a ry .  The NIS model (4) is also equivalent to an ice-rule 
model on 50'. The ice-rule model has the following vertex weights: 

0)1,  0.) 2, 0.)3, (04,  0.)5, (2) 6 = ZC~-~gi ' z ~ - e B i ,  z f l - a A i ,  z a f lA i ,  

z-~-aBi+z~+':Ai ,  z~+aBi+z ~-~Ai (9) 
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for internal sites, and the weight 

735 

( ~ = z  ~ (10) 

for external sites. Here, c4 fl, 7, and ~ are the relative angles spanned by the 
incident edges at a given site as defined in Figs. 4 and 5, the six vertex 
weights (9) are numbered as in Ref. 18, and 

Z, 2~q-Z-2"=q (11) 

The proof  that the two models have identical partition functions parallels 
that given in Ref. 18, and will not be repeated here. 

p = cr /~ /~ 
P /3 cr p H" 

p p p p p cr I ~ /I. I ~ /z 

A i + B i  Ai Bi z~.§ z-~-a ei Z-~-7'Ai+Z'~+a B i / 4 ,  

/~ tx /.t /.t 

p p p p ~, z, u z, v ~, 

/x /a. z, v u 

p i ~ p # /~ ~ i ~ v /z u 

~--/r "?r-Ot 7r-y a-T~. ~y-~,a-T~. Y'T T-II~. z~ B i z~ B i z,,, z,, ~, "F, "," " ,  z~ z,. ~, 

Fig. 4. The 15 topologically distinct vertex types that may occur at an interior site of an 
ONIS model (p r o, # # v). The weights of the three nonbasic configurations are sums of two 
basic ones, noting the trivial identity ~ + fl + 7 + 5 = 2~. 
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P P F F ~ 

-r/- - (~ 
1 z/. z z a - r r  

Fig.  5. The  three  ver tex  types  t h a t  m a y  o c c u r  at  a n  ex te rna l  site of a n  O N I S  model .  

3.3. An Oriented NIS Model  

Our proof  of the theorem in the preceding section indicates that the 
equivalence of the NIS model (4) with a Potts model is the consequence of 
a local property. This observation permits an extension of the equivalence 
to an oriented NIS (ONIS)  model. 

Consider a vertex model in which the lattice edges can be colored in ql 
distinct colors and, in addition, can be colored as well as oriented (in either 
direction along the edge) in q2 colors, with restriction that the numbers of 
in and out arrows of a given color at a vertex are the same. Again, the 
allowed configurations are those decomposable into altogether 15 
topologically distinct vertex types that may occur at an internal site and 
three types that may occur at an external site. These vertex types together 
with their vertex weights are shown in Figs. 4 and 5. We note that the case 
q2 = 0 is the (nonoriented) NIS model, and that the case ql = 0, q2 = 1 is 
the ice-rule model. Following the same argument as in deriving (5), we can 
equal the partition function Zo~is(ql ,  q2) of this ONIS  model to the right- 
hand side of (5) or (8), provided that we take 

q2 
q=ql+ ~ (z2~+ z-2~) (12) 

Therefore, the ONIS  model defined in Figs. 4 and 5 is equivalent to a q2_ 
state Potts model and to a q-state (nonoriented) NIS model. 

4. EQUIVALENCE OF A NIS M O D E L  WITH A POTTS MODEL:  
A R B I T R A R Y  LATTICES OF EVEN VALENCE 

In this section we consider more generally a NIS model on an 
arbitrary planar lattice ~ '  which is even valenced, i.e., the valence v i is even 
for all sites i. The lattice does not have to be regular, nor does the valence 
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vi need to be uniform. We shall establish that the NIS model with 
appropriate vertex weights is equivalent to a qZ-state Potts model. 

As in Section 3, we shade every other lattice face of 5 ~ and the Ports 
model is defined on a related lattice 2f (or LfD, the dual of 56) whose sites 
reside in the shaded (or unshaded) faces of ~ ' .  The lattice 2f', which was 
previously introduced by one of us, u9) now serves the same role as a 
surrounding lattice. However, as we shall see, the related Ports model will 
have multispin as well as pair interactions for vi >i-6. 

As before, we close in the boundary Ports spins by introducing new 
external sites with valence 2. The external sites conserve edge colors and 
always carry the weight 1. The appropriate assignment of vertex weights 
for internal sites is best illustrated by considering the case vi = 6. In analogy 
to Fig. 3 where, for vi = 4, two basic vertex types, namely, those associated 
with weights Ai and Be, may occur at a vertex in a polygonal decom- 
position P, there are now five basic vertex types. These are the vertices with 
weights C1, C2,..., C5 in Fig. 6. The weights of other NIS vertices with four 
or more edges having the same color are then written as appropriate linear 
combinations of all possible NIS decompositions of the vertex. There are 
altogether 15 distinct NIS vertex configurations, which are shown in Fig. 6 
together with the associated vertex weights. We next write the partition 
function ZMs(q) in a graphical expansion in terms of polygonal decom- 
positions P. This leads to the expression (8), but now with 

W ~ ( P )  = {A~, Bi}, if v~= 4 

= {C,,  C2,..., C5}, if v i =6  (13) 

If v i = 6 for all i, then the NIS model is precisely the five-vertex model 
considered by Wu and Lin.(2~ In fact, in this case Wu and Lin have shown 
that the NIS partition function (8), (13) is precisely the partition function 
of a q2-state Potts model 5 which has two-site interactions Kx, K2, and K3, 
and a three-site interaction K for every three Ports spins surrounding a site 
of Y ' ,  provided that we take 

C, = e '% - 1, n = 1, 2, 3 

C4 = q (14) 

C5 = (elC+ K1 + ~ + K~ _ eKl _ eX2 _ eX3 + 2 ) / q  

For details we refer to Ref. 20. If the lattice 5r has mixed valences 4 and 6, 
then the NIS model is equivalent to a qZ-state Potts model using either (6) 

5 Compare (13) with Eq. (1) of Ref. 20 and use Eq. (12) of Ref. 20 after replacing q by q2. 
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o- X p o- p p p p 

o" X "X o- 

C 1 C2 C3 C4 

p o- p p 

k X o- p p p p o- 

C 5 C~ + C4 C1 + C5 Cz+ C4 

o" p o" o" p p p p 

p p p p o- o- p p 

C2+ C 5 C3+ C 4 C3+ C 5 C~+ C 2 +C 3 
+ C 4 +C5 

Fig. 6. NIS vertex configurations at the ith vertex of valence 6 (p # a # 2 4: p, except p and 
may be equal in diagrams with weights Cl, Cz, and C3). The small circles, in the first 
diagram, indicate the positions of the Potts spins on lattice ~9 ~ 

or (14), as required by the valence, for obtaining the Potts interactions 
surrounding the ith site of Y' .  The exact equivalence between the two par- 
tition functions is still given by (5), identifying A i -  C5 and Bi = C4 for sites 
of valence 6. 6 

The picture for general even valence vt is now clear. At the ith site of 
L~', there are f(n) pair- and multispin Ports interactions and g(n) basic 
NIS vertex types, where n = v ] 2 .  We have already seen that 
f (2 )  = g ( 2 ) -  1 -= 1 and f ( 3 ) =  g ( 3 ) -  1 = 4. Since only g(n)- 1 of the g(n) 
basic vertex weights are independent, this leads to a unique determination 
of the Potts interactions from a given set of basic vertex weights and vice 
versa, for n = 2, 3. More generally, g(n) is the number of distinct ways that 

6 This result, which holds for finite lattices, is more general than that given in Ref. 20, which 
assumes the thermodynamic limit. 
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a linear array of 2n points can be connected pairwisely by n nonintersecting 
lines which remain on one side of the array. This number has been com- 
puted by Temperley and Lieb, (21) and is given by 

g(n) = ~- -~  (15) 

The number of distinct Potts interactions is 

r ~ 2  

As in the cases of n = 2  and 3 we choose all vertex weights to be 
appropriate linear combinations of the g(n) weights of the basic vertex 
types, according to the possible decompositions of the vertex configuration 
(into basic types). Then, the partition function of the NIS model is written 
in the form of the polygonal expansion (8), with Wi(P) ranging over these 
g(n) basic weights. To convert the polygonal decomposition expansion into 
a Potts partition function, we note that, quite generally, 

g(n)--l>f(n), n>~4 (17) 

so that we can always equate the g(n) basic vertex weights with Potts 
Boltzmann factors involving f(n) Potts interactions. This leads to a unique 
determination of the Potts interactions, provided that the g(n) weights are 
constrained for n >~ 4. So we have an equivalence of the q-state NIS model 
on an even-valenced lattice with a q2-state Potts model. This equivalence 
can again be generalized to an ONIS model with appropriate vertex 
weights. 

5. E X A C T  S O L U T I O N S  FOR T H E  S E P A R A B L E  NIS  M O D E L  

~n the preceding sections we have established the equivalence of a q- 
state NIS model (on an arbitrary planar even-valenced lattice) with a q2_ 
state Potts model. This equivalence makes it possible to deduce properties 
of the NIS model from known solutions of the Potts model for regular lat- 
tices. 

While the NIS model is defined for integer values of q, the particular 
model considered in this paper, for which the vertex weights are separable, 
permits a natural continuation of the partition function, through the 
polygonal expansion (8), to noninteger values of q. We can now discuss its 
critical properties. 
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5.1. Square Lattice 

Consider a q-state staggered NIS model on a square lattice whose 
weights are given by (4) and Fig. 3 with 

{a i, Bi} = {A 1, Bt }, i e sublattice I 

= {A2, B2}, i6 sublattice II (18) 

or, in terms of the vertex weights (3) and Fig. 2, 

r wp~)-  {Az, Bz}, i~sublat t iceI  

--~ {B2, A2}, i~ sublattice II 

w o _- A i  + B i (19) 

Theorem (5) now relates the partition function of the NIS model with that 
of an anisotropic q2-state Potts model with interactions (6) or (7). 

From known properties of the Potts model (~9"22) we have the 
following: 

(i) The NIS model is exactly soluble for q = , , / 2  for which it 
becomes an ]sing model. 

(ii) The NIS model exhibits a continuous transition for 1 <q~<2, 
with the critical exponents varying continuously with the value of q. 

(iii) The NIS model exhibits a first-order transition for q > 2 accom- 
panied by a nonzero latent heat which can be computed. 

The anisotropic Potts model is exactly soluble (~'5) at its critical point 

A I A 2  = B 1 B z  (20) 

If we divide all vertex weights on sublattice I and II by A 1 and B2, respec- 
tively, then the NIS model has uniform weights and becomes the soluble 
case NISt considered by Perk and Schultz. ~11~ Thus, we have a simple 
proof that the NIS1 model free energy of Ref. 11 is identical to that of the 
critical Potts model. This is the weak equivalence referred to in Ref. 13. 
Explicit expressions of the critical free energy will be discussed in a later 
paper. (14) 

5.2. Kagorn~ Lattice 

Consider a q-state NIS model on the Kagom6 lattice with vertex 
weights given by (4) and Fig. 3, with 
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{Ai, Bi} ~ {AI, B1} , iE sublattice I 

= {A2, B2}, i ~ sublattice II 

= {A3, B3}, i e sublattice ]II (21) 

Then Theorem (5) relates its partition function to that of an anisotropic q2 
state Potts model on a triangular (honeycomb) lattice with interactions (6) 
and (7). The same general conclusions on its critical properties can now be 
drawn as in the case of the square lattice. The NIS model is exactly soluble 
at its critical point 

B1 B2 B3 B1B2B3 (22) 
q + Z §  A3 -A1A2,43 

obtained from the corresponding Potts critical point. (6'23~ The solution has 
been given in Ref. 6. 

5.3. Triangular Lattice 

Consider a q-state NIS model on a triangular lattice with vertex 
weights given by Fig. 6. Our analysis in Section 4 relates its partition 
function to that of a triangular Potts model with two- and three-spin 
interactions for every three spins surrounding an up-pointing triangle. The 
Potts interactions K~,/s K3, and K are uniquely determined from (14). 
The NIS model is self-dual and is critical at its self-dual point (6"24) 

C4 = Cs (23) 

6. S U M M A R Y  

We have established the exact equivalence of the partition function of 
a separable q-state NIS model on any even-valenced planar lattice with 
that of a qZ-state Ports model on a-related lattice. The equivalence also 
holds for the partition function of a generalized separable q-state 
NIS model for which the lattice edges can be oriented. The resulting Potts 
model generally has multispin interactions. Critical properties of the 
NIS model are derived from this equivalence and the known properties of 
the Ports model. This includes a previously solved NIS model on a regular 
square lattice, now identified as the exact solution of the Potts model at the 
critical point. 

822/42/5-6~2 
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